cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331586 Even numbers n such that A048633(n+1) = A048633(n).

Original entry on oeis.org

174, 398, 474, 934, 1214, 1934, 2254, 2638, 2966, 3806, 3886, 4024, 4574, 4696, 4718, 4928, 4958, 4990, 5014, 5246, 5290, 5438, 6698, 6934, 7028, 7136, 7258, 7266, 7424, 7694, 7838, 8176, 8448, 8574, 8720, 8958, 9854, 9974, 10174, 10334, 10448, 11338, 11374, 12094, 12102, 12220, 12462, 12626
Offset: 1

Views

Author

Robert Israel, Jan 21 2020

Keywords

Comments

binomial(2k+1,k)/binomial(2k,k) = (2k+1)/(k+1), so 2k is a member if and only if every prime dividing 2k+1 divides binomial(2k,k) and every prime dividing k+1 divides binomial(2k+1,k).
A048633(n+1)=A048633(n) for all odd numbers n except the Mersenne numbers (A000225).

Examples

			a(1)=174 is a member because 174 is even and A048633(174)=A048633(175)=632127493640977953733428652337034082437215015190.
		

Crossrefs

Programs

  • Maple
    g:= proc(m,n,p)
      local Lm, Ln;
       Lm:= convert(m,base,p);
       Ln:= convert(n,base,p);
       min(Lm[1..nops(Ln)]-Ln) < 0
    end proc:
    filter:= proc(n) local p;
      for p in numtheory:-factorset(n+1) do
         if not g(n,n/2,p) then return false fi;
      od;
      for p in numtheory:-factorset(n/2+1) do
         if not g(n+1,n/2,p) then return false fi
      od;
      true
    end proc:
    select(filter, [seq(i,i=2..15000,2)]);