A331600 a(n) = A002487(A331595(n)).
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 4, 3, 1, 4, 1, 3, 4, 2, 1, 3, 2, 2, 3, 3, 1, 4, 1, 5, 4, 2, 4, 3, 1, 2, 4, 3, 1, 4, 1, 3, 7, 2, 1, 5, 2, 12, 4, 3, 1, 3, 8, 3, 4, 2, 1, 3, 1, 2, 7, 5, 8, 4, 1, 3, 4, 12, 1, 5, 1, 2, 4, 3, 4, 4, 1, 5, 3, 2, 1, 3, 8, 2, 4, 3, 1, 3, 8, 3, 4, 2, 8, 5, 1, 16, 7, 3, 1, 4, 1, 3, 18
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Array[If[# == 1, 1, NestWhile[If[OddQ[#3], {#1, #1 + #2, #4}, {#1 + #2, #2, #4}] & @@ Append[#, Floor[#[[-1]]/2]] &, {1, 0, #}, #[[-1]] > 0 &][[2]] &@ Apply[GCD, {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]}] &@ FactorInteger[#]] &, 105] (* Michael De Vlieger, Jan 25 2020, after JungHwan Min at A122111 *)
-
PARI
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n))); A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m)); A331595(n) = gcd(A122111(n), A241909(n)); A331600(n) = A002487(A331595(n));