cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331627 Integers that are (exactly) k-deficient-perfect numbers.

Original entry on oeis.org

1, 2, 4, 8, 10, 15, 16, 21, 32, 44, 45, 50, 52, 63, 64, 75, 99, 105, 117, 128, 130, 135, 136, 152, 153, 154, 165, 170, 182, 184, 189, 190, 195, 207, 230, 231, 232, 238, 250, 256, 266, 273, 290, 297, 310, 315, 322, 351, 375, 399, 405, 429, 434, 435, 441, 459, 484, 495, 512
Offset: 1

Views

Author

Michel Marcus, Jan 23 2020

Keywords

Comments

An integer m is an exactly k-deficient-perfect number if it has k distinct proper divisors d_i such that sigma(m) = 2*m - Sum_{i=1..k} d_i.

Examples

			117 is an exactly 2-deficient-perfect number with d1=13 and d2=39: sigma(117) = 182 = 2*117 - (13 + 39). See Theorem 1 p. 2 of Chen.
		

Crossrefs

Cf. A000203 (sigma), A271816 (deficient-perfect numbers (k=1)), A331628 (2-deficient-perfect), A331629 (3-deficient-perfect), A386317.

Programs

  • Mathematica
    kdef[n_] := n == 1 || Block[{s = 2*n - DivisorSigma[1, n], d}, If[s <= 0, False, d = Most@ Divisors@ n; MemberQ[ Total /@ Subsets[d, {1, Length@ d}], s]]]; Select[ Range[512], kdef] (* Giovanni Resta, Jan 23 2020 *)
  • PARI
    isok(m) = my(d=divisors(m), ss=sigma(m)); d = Vec(d, #d-1); forsubset(#d, s, if (#s && (sum(i=1, #s, d[s[i]]) == 2*m - ss), return(1));); \\ Michel Marcus, Dec 29 2024