A331676 Ceiling of circumradius of triangle with consecutive prime sides.
5, 8, 7, 9, 10, 12, 15, 17, 20, 22, 24, 26, 28, 32, 34, 37, 39, 41, 44, 46, 49, 53, 56, 58, 60, 62, 64, 68, 72, 77, 79, 82, 85, 89, 91, 94, 97, 101, 103, 107, 109, 112, 114, 117, 123, 128, 131, 133, 135, 138, 141, 145, 149, 152, 155, 158, 160, 162, 166, 171, 176, 180
Offset: 2
Keywords
Examples
a(2)=5 because a triangle with sides 3,5,7 has area = (1/4)*sqrt((3+5+7)(3+5-7)(3-5+7)(-3+5+7)) = 6.495... and circumradius = 3*5*7/(4A) = 4.041...
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Circumradius.
Programs
-
Mathematica
lst = {}; Do[{a, b, c}={Prime[n], Prime[n+1], Prime[n+2]}; s=(a+b+c)/2; A=Sqrt[s(s-a)(s-b)(s-c)]; R=a*b*c/(4 A); AppendTo[lst, Ceiling@R], {n, 2, 200}]; lst ccr[{a_,b_,c_}]:=Module[{s=(a+b+c)/2,A},A=Sqrt[s(s-a)(s-b)(s-c)];Ceiling[(a*b*c)/(4A)]]; ccr/@Partition[Prime[Range[2,70]],3,1] (* Harvey P. Dale, Aug 02 2025 *)
Formula
Circumradius R of a triangle with sides a, b, c is given by R = a*b*c/(4A) where the area A is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) and where s = (a+b+c)/2.
Comments