A331680 Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices.
1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 45, 72, 124, 201, 341, 561, 947, 1571, 2651, 4434, 7496, 12631, 21423, 36332, 61910, 105641, 180924, 310548, 534713, 923047
Offset: 1
Examples
The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot): o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo)) (oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo)) (ooo(oo)) (ooo(ooo)) (ooo(oooo)) ((oo)(oo)) (oooo(oo)) (oooo(ooo)) (o(o(oo))) (o(o(ooo))) (ooooo(oo)) (o(oo)(oo)) ((ooo)(ooo)) (o(oo(oo))) (o(o(oooo))) (oo(o(oo))) (o(oo(ooo))) (o(ooo(oo))) (oo(o(ooo))) (oo(oo)(oo)) (oo(oo(oo))) (ooo(o(oo))) (o((oo)(oo))) (o(o(o(oo))))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; strut[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]; Table[Length[strut[n]],{n,10}]
Comments