A331684 Number of locally disjoint enriched identity p-trees of weight n.
1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1
Examples
The a(1) = 1 through a(6) = 14 enriched p-trees: 1 2 3 4 5 6 (21) (31) (32) (42) ((21)1) (41) (51) ((21)2) (321) ((31)1) ((21)3) (((21)1)1) ((31)2) ((32)1) (3(21)) ((41)1) ((21)21) (((21)1)2) (((21)2)1) (((31)1)1) ((((21)1)1)1)
Crossrefs
Programs
-
Mathematica
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n]; Table[Length[ldeip[n]],{n,12}]
Comments