cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A316694 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(7) = 28 rooted trees:
  7,
  (16),
  (25),
  (1(15)),
  (34),
  (1(24)), (2(14)), (4(12)), (124),
  (1(1(14))),
  (3(13)),
  (2(23)),
  (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
  (1(1(1(13)))),
  (2(2(12))),
  (1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
  (1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331686 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (unequal) child of the same vertex. Lone-child-avoiding means there are no unary branchings. In an identity tree, all branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(5) = 17 trees:
  (1)  (2)   (3)       (4)            (5)
       (11)  (12)      (13)           (14)
             (111)     (22)           (23)
             ((1)(2))  (112)          (113)
                       (1111)         (122)
                       ((1)(3))       (1112)
                       ((2)(11))      (11111)
                       ((1)((1)(2)))  ((1)(4))
                                      ((2)(3))
                                      ((1)(22))
                                      ((3)(11))
                                      ((2)(111))
                                      ((1)((1)(3)))
                                      ((2)((1)(2)))
                                      ((11)((1)(2)))
                                      ((1)((2)(11)))
                                      ((1)((1)((1)(2))))
		

Crossrefs

The non-identity version is A331678.
The case where the leaves are all singletons is A316694.
Identity trees are A004111.
Locally disjoint identity trees are A316471.
Locally disjoint enriched identity p-trees are A331684.
Lone-child-avoiding locally disjoint rooted semi-identity trees are A212804.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A331875 Number of enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 32, 79, 198, 522, 1368, 3716, 9992, 27612, 75692, 212045, 589478, 1668630, 4690792, 13387332, 37980664, 109098556, 311717768, 900846484, 2589449032, 7515759012, 21720369476, 63305262126, 183726039404, 537364221200, 1565570459800, 4592892152163
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

An enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A300660.
The locally disjoint case is A331684.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.

Programs

  • Mathematica
    eptrid[n_]:=Prepend[Select[Join@@Table[Tuples[eptrid/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&],n];
    Table[Length[eptrid[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, sum(j=0, n\k, j!*binomial(v[k],j)*x^(k*j)) + O(x*x^n)), n)); v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 09 2020

A331687 Number of locally disjoint enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 12, 29, 93, 249, 803, 2337, 7480, 23130, 77372, 247598, 834507, 2762222
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(4) = 12 enriched p-trees:
  1  2     3        4
     (11)  (21)     (22)
           (111)    (31)
           ((11)1)  (211)
                    (1111)
                    ((11)2)
                    ((21)1)
                    (2(11))
                    ((11)11)
                    ((111)1)
                    (((11)1)1)
                    ((11)(11))
		

Crossrefs

The orderless version is A316696.
The identity case is A331684.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldep[n]],{n,10}]

A331783 Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o(oo)))
                          ((((o))))  ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The lone-child-avoiding case is A212804.
The identity tree version is A316471.
The Matula-Goebel numbers of these trees are given by A331682.
Identity trees are A004111.
Semi-identity trees are A306200.
Locally disjoint rooted trees are A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are A316494.

Programs

  • Mathematica
    disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]];
    Table[Length[ldrsi[n]],{n,10}]
Showing 1-5 of 5 results.