A316694
Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1
The a(7) = 28 rooted trees:
7,
(16),
(25),
(1(15)),
(34),
(1(24)), (2(14)), (4(12)), (124),
(1(1(14))),
(3(13)),
(2(23)),
(1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
(1(1(1(13)))),
(2(2(12))),
(1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
(1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
The semi-identity tree version is
A212804.
Not requiring local disjointness gives
A300660.
The non-identity tree version is
A316696.
This is the case of
A331686 where all leaves are singletons.
Locally disjoint rooted identity trees are
A316471.
Lone-child-avoiding locally disjoint rooted trees are
A331680.
Locally disjoint enriched identity p-trees are
A331684.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
Table[Length[nms[n]],{n,10}]
Updated with corrected terminology by
Gus Wiseman, Feb 06 2020
A331686
Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1
The a(1) = 1 through a(5) = 17 trees:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(111) (22) (23)
((1)(2)) (112) (113)
(1111) (122)
((1)(3)) (1112)
((2)(11)) (11111)
((1)((1)(2))) ((1)(4))
((2)(3))
((1)(22))
((3)(11))
((2)(111))
((1)((1)(3)))
((2)((1)(2)))
((11)((1)(2)))
((1)((2)(11)))
((1)((1)((1)(2))))
The non-identity version is
A331678.
The case where the leaves are all singletons is
A316694.
Locally disjoint identity trees are
A316471.
Locally disjoint enriched identity p-trees are
A331684.
Lone-child-avoiding locally disjoint rooted semi-identity trees are
A212804.
Cf.
A000669,
A001678,
A005804,
A141268,
A300660,
A316697,
A319312,
A331679,
A331683,
A331783,
A331874,
A331875.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
A331875
Number of enriched identity p-trees of weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 14, 32, 79, 198, 522, 1368, 3716, 9992, 27612, 75692, 212045, 589478, 1668630, 4690792, 13387332, 37980664, 109098556, 311717768, 900846484, 2589449032, 7515759012, 21720369476, 63305262126, 183726039404, 537364221200, 1565570459800, 4592892152163
Offset: 1
The a(1) = 1 through a(6) = 14 enriched p-trees:
1 2 3 4 5 6
(21) (31) (32) (42)
((21)1) (41) (51)
((21)2) (321)
((31)1) ((21)3)
(((21)1)1) ((31)2)
((32)1)
(3(21))
((41)1)
((21)21)
(((21)1)2)
(((21)2)1)
(((31)1)1)
((((21)1)1)1)
The locally disjoint case is
A331684.
-
eptrid[n_]:=Prepend[Select[Join@@Table[Tuples[eptrid/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&],n];
Table[Length[eptrid[n]],{n,10}]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, sum(j=0, n\k, j!*binomial(v[k],j)*x^(k*j)) + O(x*x^n)), n)); v} \\ Andrew Howroyd, Feb 09 2020
A331687
Number of locally disjoint enriched p-trees of weight n.
Original entry on oeis.org
1, 2, 4, 12, 29, 93, 249, 803, 2337, 7480, 23130, 77372, 247598, 834507, 2762222
Offset: 1
The a(1) = 1 through a(4) = 12 enriched p-trees:
1 2 3 4
(11) (21) (22)
(111) (31)
((11)1) (211)
(1111)
((11)2)
((21)1)
(2(11))
((11)11)
((111)1)
(((11)1)1)
((11)(11))
Locally disjoint identity trees are
A316471.
Enriched identity p-trees are
A331875.
Cf.
A000669,
A141268,
A316473,
A316495,
A316694,
A316697,
A319312,
A331678,
A331679,
A331680,
A331686,
A331871,
A331874.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
Table[Length[ldep[n]],{n,10}]
A331783
Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1
The a(1) = 1 through a(6) = 17 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(((o))) (oo(o)) (oo(oo))
(((oo))) (ooo(o))
((o(o))) (((ooo)))
(o((o))) ((o(oo)))
((((o)))) ((oo(o)))
(o((oo)))
(o(o(o)))
(oo((o)))
((((oo))))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
The lone-child-avoiding case is
A212804.
The identity tree version is
A316471.
The Matula-Goebel numbers of these trees are given by
A331682.
Locally disjoint rooted trees are
A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are
A316494.
-
disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]];
Table[Length[ldrsi[n]],{n,10}]
Showing 1-5 of 5 results.
Comments