A331685 Number of tree-factorizations of Heinz numbers of integer partitions of n.
1, 3, 7, 23, 69, 261, 943, 3815, 15107, 63219, 262791, 1130953, 4838813, 21185125, 92593943, 411160627, 1823656199, 8186105099, 36728532951, 166310761655
Offset: 1
Examples
The a(1) = 1 through a(4) = 23 tree-factorizations: 2 3 5 7 4 6 9 (2*2) 8 10 (2*3) 12 (2*4) 16 (2*2*2) (2*5) (2*(2*2)) (2*6) (2*8) (3*3) (3*4) (4*4) (2*2*3) (2*2*4) (2*2*2*2) (2*(2*3)) ((2*2)*4) (2*(2*4)) (3*(2*2)) (4*(2*2)) (2*(2*2*2)) (2*2*(2*2)) ((2*2)*(2*2)) (2*(2*(2*2)))
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; physemi[n_]:=Prepend[Join@@Table[Tuples[physemi/@f],{f,Select[facs[n],Length[#]>1&]}],n]; Table[Sum[Length[physemi[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,8}]
-
PARI
\\ here TF(n) is n terms of A281118 as vector. TF(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += w[k]^e*v[i]))); w} a(n)={my(v=[prod(i=1, #p, prime(p[i])) | p<-partitions(n)], tf=TF(vecmax(v))); sum(i=1, #v, tf[v[i]])} \\ Andrew Howroyd, Dec 09 2020
Extensions
a(13)-a(20) from Andrew Howroyd, Dec 09 2020
Comments