A331686 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.
1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1
Examples
The a(1) = 1 through a(5) = 17 trees: (1) (2) (3) (4) (5) (11) (12) (13) (14) (111) (22) (23) ((1)(2)) (112) (113) (1111) (122) ((1)(3)) (1112) ((2)(11)) (11111) ((1)((1)(2))) ((1)(4)) ((2)(3)) ((1)(22)) ((3)(11)) ((2)(111)) ((1)((1)(3))) ((2)((1)(2))) ((11)((1)(2))) ((1)((2)(11))) ((1)((1)((1)(2))))
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
Comments