cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331724 Multiply-perfect numbers (A007691) that are arithmetic (A003601).

Original entry on oeis.org

1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480
Offset: 1

Views

Author

Jaroslav Krizek, Jan 25 2020

Keywords

Comments

Multiply-perfect numbers m such that values A(m) = sigma(m)/tau(m) = A000203(m)/A000005(m) are any integers.
Corresponding values of A(m): 1, 3, 84, 1260, 1365, 294624, 474300, 36933435, 318757376, 637514752, 1199497728, ...
Complement of A330533 with respect to A007691. Supersequence of A046985.
Has many terms in common with B = {multiply perfect numbers n divisible by bigomega(n)}: only {1, 45532800, 403031236608, 212517062615531520, ...} are in {a(n)} \ B, while {120, 523776, 2178540, ...} are in B \ {a(n)}. - M. F. Hasler, Jan 31 2020

Examples

			sigma(672)/tau(672) = 2016/24 = 84 (integers).
		

Crossrefs

Cf. A325025 (multiply-perfect numbers that are harmonic).

Programs

  • Magma
    [m: m in [1..10^7] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(SumOfDivisors(m) / m)];
    
  • Mathematica
    seqQ[n_] := And @@ (Divisible[DivisorSigma[1, n], #] & /@ {n, DivisorSigma[0, n]}); Select[Range[5*10^7], seqQ] (* Amiram Eldar, Jan 25 2020 *)
  • PARI
    is_A331724(n)={my(f=factor(n),s=sigma(f));!(s%n||s%numdiv(f))} \\ M. F. Hasler, Jan 31 2020