cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331735 a(n) = A009194(A225546(n)) = gcd(A225546(n), sigma(A225546(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 3, 1, 12, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 12, 1, 9, 1, 4, 1, 1, 1, 10, 1, 3, 1, 1, 1, 1, 1, 12, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, DivisorSigma[1, #]] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331735(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); gcd(prod(i=1,u,prime(i)^A048675(prods[i])), prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1))));

Formula

a(n) = A009194(A225546(n)) = gcd(A225546(n), A331733(n)).