A331736 The largest odd divisor of A225546(n).
1, 1, 1, 3, 1, 1, 1, 3, 9, 1, 1, 3, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 3, 81, 1, 9, 3, 1, 1, 1, 5, 1, 1, 1, 27, 1, 1, 1, 3, 1, 1, 1, 3, 9, 1, 1, 5, 6561, 81, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 1, 9, 15, 1, 1, 1, 3, 1, 1, 1, 27, 1, 1, 81, 3, 1, 1, 1, 5, 25, 1, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 5, 1, 6561, 9, 243, 1, 1, 1, 3, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1680
Programs
-
Mathematica
Array[#/2^IntegerExponent[#, 2] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
-
PARI
A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n)); A331736(n) = { my(f=factor(n)); for (i=1, #f~, my(p=f[i, 1]); f[i, 1] = A019565((f[i, 2]>>1)<<1); f[i, 2] = 2^(primepi(p)-1); ); factorback(f); };
-
PARI
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A331736(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=2,e); for(i=2,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=2,u,prime(i)^A048675(prods[i])));