cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331741 Squares s such that A331733(s) = sigma(A225546(n)) is congruent to 2 modulo 4.

Original entry on oeis.org

16, 144, 400, 784, 1936, 2704, 3600, 4624, 5776, 7056, 8464, 10000, 13456, 15376, 17424, 19600, 21904, 24336, 26896, 29584, 35344, 38416, 41616, 44944, 48400, 51984, 55696, 59536, 67600, 71824, 76176, 80656, 85264, 90000, 94864, 99856, 104976, 110224, 115600, 121104, 126736, 132496, 138384, 144400, 150544, 163216, 169744, 176400
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2020

Keywords

Comments

Squares s for which A331733(s) is two times an odd number, i.e., squares s such that A007814(A331733(s)) == 1.
For each term k present, A006519(k) = 2^(2^e), with A000040(1+e) == 1 (mod 4). See A191218, A228058.
Equal to the sequence A225546(A191218(n)), for n >= 1, when its elements are sorted into ascending order.

Crossrefs

Programs

  • Mathematica
    Select[Range[100]^2, Mod[DivisorSigma[1, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@# + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]], 4] == 2 &] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    k=0; for(n=1,500,if(!(n%2)&&(1==A007814(A331733(n^2))),k++; write("b331741.txt", k, " ", n^2); print(n^2, " -> ", factor(n^2),", ")));

Formula

{n: A010052(n)*A007814(A331733(n)) == 1}.