A331745 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A323901(i) = A323901(j) for all i, j.
1, 2, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 24, 21, 40, 4, 41, 22, 42, 12, 43, 23, 44, 7, 45, 24, 46, 13, 47, 25, 48, 3, 49, 26, 50, 14, 51, 27, 52, 8, 45
Offset: 0
Keywords
Links
Programs
-
PARI
\\ Needs also code from A323901. up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A278222(n) = A046523(A005940(1+n)); Aux331745(n) = [A278222(n),A323901(n)]; v331745 = rgs_transform(vector(1+up_to, n, Aux331745(n-1))); A331745(n) = v331745[1+n];
Formula
a(2^n) = 2 for all n >= 0.
Comments