cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331755 Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1

Views

Author

N. J. A. Sloane, Feb 02 2020

Keywords

Crossrefs

Cf. A290131 (regions), A290132 (edges), A333274 (polygons per vertex), A333276, A159065.
For K_n see A007569, A007678, A135563.

Programs

  • Maple
    # Maple code from N. J. A. Sloane, Jul 16 2020
    V106i := proc(n) local ans,a,b; ans:=0;
    for a from 1 to n-1 do for b from 1 to n-1 do
    if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004
    V106ii := proc(n) local ans,a,b; ans:=0;
    for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do
    if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761
    A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
  • Mathematica
    a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)

Formula

a(n) = A290132(n) - A290131(n) + 1.
a(n) = A159065(n) + 2*n.
This is column 1 of A331453.
a(n) = (9/(8*Pi^2))*n^4 + O(n^3 log(n)). Asymptotic to (9/(2*Pi^2))*A000537(n-1). [Stéphane Legendre, see A159065.]