A331755 Number of vertices in a regular drawing of the complete bipartite graph K_{n,n}.
2, 5, 13, 35, 75, 159, 275, 477, 755, 1163, 1659, 2373, 3243, 4429, 5799, 7489, 9467, 11981, 14791, 18275, 22215, 26815, 31847, 37861, 44499, 52213, 60543, 70011, 80347, 92263, 105003, 119557, 135327, 152773, 171275, 191721, 213547, 237953
Offset: 1
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- Scott R. Shannon, Images of vertices for n=2.
- Scott R. Shannon, Images of vertices for n=3.
- Scott R. Shannon, Images of vertices for n=4.
- Scott R. Shannon, Images of vertices for n=5.
- Scott R. Shannon, Images of vertices for n=6
- Scott R. Shannon, Images of vertices for n=7
- Scott R. Shannon, Images of vertices for n=8
- Scott R. Shannon, Images of vertices for n=9
- Scott R. Shannon, Images of vertices for n=10.
- Scott R. Shannon, Images of vertices for n=12.
- Scott R. Shannon, Images of vertices for n=15.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Index entries for sequences related to stained glass windows
Crossrefs
Programs
-
Maple
# Maple code from N. J. A. Sloane, Jul 16 2020 V106i := proc(n) local ans,a,b; ans:=0; for a from 1 to n-1 do for b from 1 to n-1 do if igcd(a,b)=1 then ans:=ans + (n-a)*(n-b); fi; od: od: ans; end; # A115004 V106ii := proc(n) local ans,a,b; ans:=0; for a from 1 to floor(n/2) do for b from 1 to floor(n/2) do if igcd(a,b)=1 then ans:=ans + (n-2*a)*(n-2*b); fi; od: od: ans; end; # A331761 A331755 := n -> 2*(n+1) + V106i(n+1) - V106ii(n+1);
-
Mathematica
a[n_]:=Module[{x,y,s1=0,s2=0}, For[x=1, x<=n-1, x++, For[y=1, y<=n-1, y++, If[GCD[x,y]==1,s1+=(n-x)*(n-y); If[2*x<=n-1&&2*y<=n-1,s2+=(n-2*x)*(n-2*y)]]]]; s1-s2]; Table[a[n]+ 2 n, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2020 *)