A331781 Triangle read by rows: T(m,n) = Sum_{0= n >= 1.
0, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 6, 9, 11, 0, 5, 8, 12, 15, 19, 0, 6, 9, 13, 16, 21, 23, 0, 7, 11, 16, 20, 26, 29, 35, 0, 8, 12, 18, 22, 29, 32, 39, 43, 0, 9, 14, 20, 25, 33, 36, 44, 49, 55, 0, 10, 15, 22, 27, 35, 38, 47, 52, 59, 63, 0, 11, 17, 25, 31, 40, 44, 54, 60, 68, 73, 83
Offset: 1
Examples
Triangle begins: 0, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 6, 9, 11, 0, 5, 8, 12, 15, 19, 0, 6, 9, 13, 16, 21, 23, 0, 7, 11, 16, 20, 26, 29, 35, 0, 8, 12, 18, 22, 29, 32, 39, 43, 0, 9, 14, 20, 25, 33, 36, 44, 49, 55 ...
Links
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Lemma 11.
Programs
-
Maple
VS := proc(m,n) local a,i,j; a:=0; for i from 1 to m-1 do for j from 1 to n-1 do if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; for m from 1 to 12 do lprint([seq(VS(m,n),n=1..m)]); od:
-
Mathematica
Table[Sum[Boole[# == 1] # &@ GCD[i, j], {i, m - 1}, {j, n - 1}], {m, 12}, {n, m}] // Flatten (* Michael De Vlieger, Feb 12 2020 *)