A331783 Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.
1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1
Examples
The a(1) = 1 through a(6) = 17 trees: o (o) (oo) (ooo) (oooo) (ooooo) ((o)) ((oo)) ((ooo)) ((oooo)) (o(o)) (o(oo)) (o(ooo)) (((o))) (oo(o)) (oo(oo)) (((oo))) (ooo(o)) ((o(o))) (((ooo))) (o((o))) ((o(oo))) ((((o)))) ((oo(o))) (o((oo))) (o(o(o))) (oo((o))) ((((oo)))) (((o(o)))) ((o)((o))) ((o((o)))) (o(((o)))) (((((o)))))
Crossrefs
The lone-child-avoiding case is A212804.
The identity tree version is A316471.
The Matula-Goebel numbers of these trees are given by A331682.
Identity trees are A004111.
Semi-identity trees are A306200.
Locally disjoint rooted trees are A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are A316494.
Programs
-
Mathematica
disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]]; Table[Length[ldrsi[n]],{n,10}]
Comments