A331789 T(b,n) is the smallest m such that for any N, at least one of S(N), S(N+1), ..., S(N+m-1) is divisible by n, where S(N) is the sum of digits of N in base b. Square array read by ascending antidiagonals.
1, 1, 3, 1, 2, 7, 1, 3, 5, 15, 1, 2, 3, 8, 31, 1, 3, 5, 7, 17, 63, 1, 2, 5, 4, 15, 26, 127, 1, 3, 3, 7, 9, 15, 53, 255, 1, 2, 5, 6, 5, 14, 31, 80, 511, 1, 3, 5, 7, 9, 11, 29, 63, 161, 1023, 1, 2, 3, 4, 9, 6, 23, 24, 63, 242, 2047, 1, 3, 5, 7, 9, 11, 13, 35, 49, 127, 485, 4095
Offset: 2
Examples
Table begins b\n 1 2 3 4 5 6 7 8 9 10 2 1 3 7 15 31 63 127 255 511 1023 3 1 2 5 8 17 26 53 80 161 242 4 1 3 3 7 15 15 31 63 63 127 5 1 2 5 4 9 14 29 24 49 74 6 1 3 5 7 5 11 23 35 47 35 7 1 2 3 6 9 6 13 20 27 48 8 1 3 5 7 9 11 7 15 31 47 9 1 2 5 4 9 10 13 8 17 26 10 1 3 3 7 9 9 13 15 9 19
Links
- Jianing Song, Table of n, a(n) for n = 2..7627 (Note: T(b,n) occurs at the ((n+b-2)*(n+b-1)/2-b+3)-th place)
Programs
-
PARI
T(b,n) = my(s=(n-1)\(b-1), t=(n-1)%(b-1)+1); b^s*(2*t-gcd(t,b-1)+1)-1
Comments