A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).
2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq