A331866 Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1
Examples
For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime. For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime. For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime. For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime. For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
Links
- Chris Caldwell, The Prime Glossary, Near-repunit prime.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
Crossrefs
Programs
-
Mathematica
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
-
PARI
for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))
Extensions
a(15) from Michael S. Branicky, Sep 24 2024
Comments