A331872 Number of semi-lone-child-avoiding locally disjoint rooted trees with n vertices.
1, 1, 1, 2, 4, 6, 12, 19, 35, 59, 104, 179, 318, 556, 993, 1772, 3202, 5807, 10643, 19594, 36380, 67915
Offset: 1
Examples
The a(1) = 1 through a(8) = 19 trees: o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (o(o)) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (oo(o)) (oo(oo)) (oo(ooo)) (oo(oooo)) ((o)(o)) (ooo(o)) (ooo(oo)) (ooo(ooo)) (o(o)(o)) (oooo(o)) (oooo(oo)) (o(o(o))) ((oo)(oo)) (ooooo(o)) (o(o(oo))) (o(o(ooo))) (o(oo(o))) (o(oo)(oo)) (oo(o)(o)) (o(oo(oo))) (oo(o(o))) (o(ooo(o))) ((o)(o)(o)) (oo(o(oo))) (o((o)(o))) (oo(oo(o))) (ooo(o)(o)) (ooo(o(o))) (o(o)(o)(o)) (o(o(o)(o))) (o(o(o(o)))) (oo((o)(o))) ((o)((o)(o)))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; strutsemi[n_]:=If[n==1,{{}},If[n==2,{{{}}},Select[Join@@Function[c,Union[Sort/@Tuples[strutsemi/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]]; Table[Length[strutsemi[n]],{n,8}]
Comments