cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331874 Number of semi-lone-child-avoiding locally disjoint rooted trees with n unlabeled leaves.

Original entry on oeis.org

2, 3, 8, 24, 67, 214, 687, 2406, 8672, 32641, 125431, 493039, 1964611
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 2 through a(4) = 24 trees:
  o    (oo)      (ooo)          (oooo)
  (o)  (o(o))    (o(oo))        (o(ooo))
       ((o)(o))  (oo(o))        (oo(oo))
                 (o(o)(o))      (ooo(o))
                 (o(o(o)))      ((oo)(oo))
                 ((o)(o)(o))    (o(o(oo)))
                 (o((o)(o)))    (o(oo(o)))
                 ((o)((o)(o)))  (oo(o)(o))
                                (oo(o(o)))
                                (o(o)(o)(o))
                                (o(o(o)(o)))
                                (o(o(o(o))))
                                (oo((o)(o)))
                                ((o)(o)(o)(o))
                                ((o(o))(o(o)))
                                ((oo)((o)(o)))
                                (o((o)(o)(o)))
                                (o(o)((o)(o)))
                                (o(o((o)(o))))
                                ((o)((o)(o)(o)))
                                ((o)(o)((o)(o)))
                                (o((o)((o)(o))))
                                (((o)(o))((o)(o)))
                                ((o)((o)((o)(o))))
		

Crossrefs

Not requiring local disjointness gives A050381.
The non-semi version is A316697.
The same trees counted by number of vertices are A331872.
The Matula-Goebel numbers of these trees are A331873.
Lone-child-avoiding rooted trees counted by leaves are A000669.
Semi-lone-child-avoiding rooted trees counted by vertices are A331934.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    slaurt[n_]:=If[n==1,{o,{o}},Join@@Table[Select[Union[Sort/@Tuples[slaurt/@ptn]],disjointQ[Select[#,!AtomQ[#]&]]&],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[slaurt[n]],{n,8}]