A331874 Number of semi-lone-child-avoiding locally disjoint rooted trees with n unlabeled leaves.
2, 3, 8, 24, 67, 214, 687, 2406, 8672, 32641, 125431, 493039, 1964611
Offset: 1
Examples
The a(1) = 2 through a(4) = 24 trees: o (oo) (ooo) (oooo) (o) (o(o)) (o(oo)) (o(ooo)) ((o)(o)) (oo(o)) (oo(oo)) (o(o)(o)) (ooo(o)) (o(o(o))) ((oo)(oo)) ((o)(o)(o)) (o(o(oo))) (o((o)(o))) (o(oo(o))) ((o)((o)(o))) (oo(o)(o)) (oo(o(o))) (o(o)(o)(o)) (o(o(o)(o))) (o(o(o(o)))) (oo((o)(o))) ((o)(o)(o)(o)) ((o(o))(o(o))) ((oo)((o)(o))) (o((o)(o)(o))) (o(o)((o)(o))) (o(o((o)(o)))) ((o)((o)(o)(o))) ((o)(o)((o)(o))) (o((o)((o)(o)))) (((o)(o))((o)(o))) ((o)((o)((o)(o))))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Not requiring local disjointness gives A050381.
The non-semi version is A316697.
The same trees counted by number of vertices are A331872.
The Matula-Goebel numbers of these trees are A331873.
Lone-child-avoiding rooted trees counted by leaves are A000669.
Semi-lone-child-avoiding rooted trees counted by vertices are A331934.
Programs
-
Mathematica
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; slaurt[n_]:=If[n==1,{o,{o}},Join@@Table[Select[Union[Sort/@Tuples[slaurt/@ptn]],disjointQ[Select[#,!AtomQ[#]&]]&],{ptn,Rest[IntegerPartitions[n]]}]]; Table[Length[slaurt[n]],{n,8}]
Comments