A331889 Table T(n,k) read by upward antidiagonals. T(n,k) is the minimum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}.
1, 3, 2, 6, 10, 6, 10, 28, 54, 24, 15, 60, 214, 402, 120, 21, 110, 594, 2348, 3810, 720, 28, 182, 1334, 8556, 32808, 43776, 5040, 36, 280, 2614
Offset: 1
Links
- Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020-2022.
Programs
-
Python
from itertools import combinations, permutations from sympy import factorial def T(n,k): # T(n,k) for A331889 if k == 1: return n*(n+1)//2 if n == 1: return int(factorial(k)) if k == 2: return n*(n+1)*(2*n+1)//3 nk = n*k nktuple = tuple(range(1,nk+1)) nkset = set(nktuple) count = int(factorial(nk)) for firsttuple in combinations(nktuple,n): nexttupleset = nkset-set(firsttuple) for s in permutations(sorted(nexttupleset),nk-2*n): llist = sorted(nexttupleset-set(s),reverse=True) t = list(firsttuple) for i in range(0,k-2): itn = i*n for j in range(n): t[j] *= s[itn+j] t.sort() v = 0 for i in range(n): v += llist[i]*t[i] if v < count: count = v return count
Comments