cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331902 T(n, k) = floor(n/m) where m is the least positive integer such that floor(n/m) = floor(k/m). Square array read by antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jan 31 2020

Keywords

Comments

For any n > 0, the n-th row has A001651(n) nonzero terms.

Examples

			Array T(n, k) begins (with dots instead of 0's for readability):
   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12
   ---+----------------------------------------------------
     0|   .   .   .   .   .   .   .   .   .   .   .   .   .
     1|   .   1   .   .   .   .   .   .   .   .   .   .   .
     2|   .   .   2   1   .   .   .   .   .   .   .   .   .
     3|   .   .   1   3   1   1   .   .   .   .   .   .   .
     4|   .   .   .   1   4   2   1   1   .   .   .   .   .
     5|   .   .   .   1   2   5   1   1   1   1   .   .   .
     6|   .   .   .   .   1   1   6   3   2   1   1   1   .
     7|   .   .   .   .   1   1   3   7   2   1   1   1   1
     8|   .   .   .   .   .   1   2   2   8   4   2   2   1
     9|   .   .   .   .   .   1   1   1   4   9   3   3   1
    10|   .   .   .   .   .   .   1   1   2   3  10   5   2
    11|   .   .   .   .   .   .   1   1   2   3   5  11   2
    12|   .   .   .   .   .   .   .   1   1   1   2   2  12
		

Crossrefs

Programs

  • PARI
    T(n,k) = for (x=1, oo, if (n\x==k\x, return (n\x)))

Formula

T(n, k) = floor(n/A331886(n, k)) = floor(k/A331886(n, k)).
T(n, k) = T(k, n).
T(n, k) = 0 iff max(n, k) >= 2*min(n, k).
T(n, n+1) = A213633(n+1).