cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331915 Numbers with exactly one prime prime index, counted with multiplicity.

Original entry on oeis.org

3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}             57: {2,8}            114: {1,2,8}
    5: {3}             59: {17}             115: {3,9}
    6: {1,2}           62: {1,11}           118: {1,17}
   10: {1,3}           65: {3,6}            119: {4,7}
   11: {5}             67: {19}             124: {1,1,11}
   12: {1,1,2}         68: {1,1,7}          127: {31}
   17: {7}             69: {2,9}            129: {2,14}
   20: {1,1,3}         70: {1,3,4}          130: {1,3,6}
   21: {2,4}           77: {4,5}            134: {1,19}
   22: {1,5}           78: {1,2,6}          136: {1,1,1,7}
   24: {1,1,1,2}       80: {1,1,1,1,3}      138: {1,2,9}
   31: {11}            82: {1,13}           140: {1,1,3,4}
   34: {1,7}           83: {23}             141: {2,15}
   35: {3,4}           84: {1,1,2,4}        143: {5,6}
   39: {2,6}           87: {2,10}           145: {3,10}
   40: {1,1,1,3}       88: {1,1,1,5}        147: {2,4,4}
   41: {13}            95: {3,8}            154: {1,4,5}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
   44: {1,1,5}        109: {29}             157: {37}
   48: {1,1,1,1,2}    111: {2,12}           159: {2,16}
		

Crossrefs

These are numbers n such that A257994(n) = 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with exactly one prime index in S are A331785.
The set S of numbers with exactly one distinct prime index in S are A331913.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]