A331918 Number of compositions (ordered partitions) of n into distinct odd squares.
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 6, 24, 0, 0, 0, 0, 0, 2
Offset: 0
Examples
a(35) = 6 because we have [25, 9, 1], [25, 1, 9], [9, 25, 1], [9, 1, 25], [1, 25, 9] and [1, 9, 25].
Links
Programs
-
Maple
N:= 200: # for a(0)..a(N) G:= mul(1+t*x^(i^2),i=1..floor(sqrt(N)),2): F:= proc(n) local R, k, v; R:= coeff(G,x,n); add(k!*coeff(R,t,k),k=1..degree(R,t)) end proc: F(0):= 1: map(F, [$0..N]); # Robert Israel, Feb 03 2020