A331925 Number of compositions (ordered partitions) of n into distinct prime powers (including 1).
1, 1, 1, 3, 3, 5, 10, 11, 17, 19, 48, 49, 62, 85, 120, 258, 175, 337, 464, 631, 646, 932, 1686, 1991, 2122, 2455, 4118, 4545, 6010, 6481, 13302, 14383, 16177, 16912, 26454, 32024, 35468, 42389, 57334, 107708, 73830, 125629, 142560, 200377, 172752, 244624
Offset: 0
Keywords
Examples
a(6) = 10 because we have [5, 1], [4, 2], [3, 2, 1], [3, 1, 2], [2, 4], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
Links
Programs
-
Maple
N:= 50: # for a(0)..a(N) P:= select(isprime, [2,seq(i,i=3..N,2)]): PP:= sort([1,seq(seq(p^j, j = 1 .. ilog[p](N)),p=P)]):G:= 1: for s in PP do G:= G + series(G*x*y^s,y,N+1); od: G:= convert(G,polynom): T:= add(coeff(G,x,i)*i!,i=0..N): seq(coeff(T,y,i),i=0..N); # Robert Israel, Jun 28 2024