A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.
1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 21, 24, 26, 27, 28, 32, 36, 38, 39, 42, 46, 48, 49, 52, 54, 56, 57, 63, 64, 69, 72, 74, 76, 78, 81, 84, 86, 91, 92, 96, 98, 104, 106, 108, 111, 112, 114, 117, 122, 126, 128, 129, 133, 138, 144, 146, 147, 148, 152, 156, 159
Offset: 1
Keywords
Examples
The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 6: (o(o)) 8: (ooo) 9: ((o)(o)) 12: (oo(o)) 14: (o(oo)) 16: (oooo) 18: (o(o)(o)) 21: ((o)(oo)) 24: (ooo(o)) 26: (o(o(o))) 27: ((o)(o)(o)) 28: (oo(oo)) 32: (ooooo) 36: (oo(o)(o)) 38: (o(ooo)) 39: ((o)(o(o))) 42: (o(o)(oo)) The sequence of terms together with their prime indices begins: 1: {} 46: {1,9} 98: {1,4,4} 2: {1} 48: {1,1,1,1,2} 104: {1,1,1,6} 4: {1,1} 49: {4,4} 106: {1,16} 6: {1,2} 52: {1,1,6} 108: {1,1,2,2,2} 8: {1,1,1} 54: {1,2,2,2} 111: {2,12} 9: {2,2} 56: {1,1,1,4} 112: {1,1,1,1,4} 12: {1,1,2} 57: {2,8} 114: {1,2,8} 14: {1,4} 63: {2,2,4} 117: {2,2,6} 16: {1,1,1,1} 64: {1,1,1,1,1,1} 122: {1,18} 18: {1,2,2} 69: {2,9} 126: {1,2,2,4} 21: {2,4} 72: {1,1,1,2,2} 128: {1,1,1,1,1,1,1} 24: {1,1,1,2} 74: {1,12} 129: {2,14} 26: {1,6} 76: {1,1,8} 133: {4,8} 27: {2,2,2} 78: {1,2,6} 138: {1,2,9} 28: {1,1,4} 81: {2,2,2,2} 144: {1,1,1,1,2,2} 32: {1,1,1,1,1} 84: {1,1,2,4} 146: {1,21} 36: {1,1,2,2} 86: {1,14} 147: {2,4,4} 38: {1,8} 91: {4,6} 148: {1,1,12} 39: {2,6} 92: {1,1,9} 152: {1,1,1,8} 42: {1,2,4} 96: {1,1,1,1,1,2} 156: {1,1,2,6}
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
The enumeration of these trees by leaves is A050381.
The locally disjoint version A331873.
The enumeration of these trees by nodes is A331934.
The case with at most one distinct non-leaf branch of any vertex is A331936.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Programs
-
Mathematica
mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[100],mseQ]
Comments