A331944 a(n)/ceiling(6^(n-7)) is the expected number of rolls of a fair 6-sided die in a game where the player starts at 0, advances the position by the outcome of the die's roll until exactly position n is reached. Positions beyond n are avoided by staying at the last visited position, but counting the rolls.
6, 6, 6, 6, 6, 6, 7, 43, 265, 1639, 10177, 63463, 397585, 2456503, 15189313, 93961351, 581260273, 3594003799, 22197096865, 136829952295, 843199062097, 5193720847351, 31972185139201, 196686016677319, 1209120275495089, 7428214177132183, 45613560985649761
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..200
- S. C. Althoen, L. King, K. Schilling, How long is a game of snakes and ladders? The Mathematical Gazette, Vol. 77, No. 478 (Mar., 1993), pp. 71-76.
Programs
-
PARI
xpected(n,m)={my(M=matrix(n+1,n+1,i,j,0)); for(i=1,n+1,my(kadd=0); for(j=i+1,i+m,if(j>n+1,kadd++,M[i,j]=1));M[i,i]+=kadd); vecsum((1/(matid(n)-M[1..n,1..n]/m))[1,])}; for(k=1,27,my(x=xpected(k,6));print1(numerator(x),", "))
Formula
Conjectures from Colin Barker, Feb 21 2020: (Start)
G.f.: x*(6 - 36*x - 36*x^2 - 36*x^3 - 36*x^4 - 36*x^5 - 35*x^6 + 279930*x^7 + 279900*x^8 + 279720*x^9 + 278640*x^10 + 272160*x^11 + 233280*x^12) / ((1 - 6*x)^2*(1 + 5*x + 24*x^2 + 108*x^3 + 432*x^4 + 1296*x^5)).
a(n) = 7*a(n-1) - 46656*a(n-7) for n>13.
(End)
Comments