A331963 Matula-Goebel numbers of semi-lone-child-avoiding rooted identity trees.
1, 2, 6, 26, 39, 78, 202, 303, 334, 501, 606, 794, 1002, 1191, 1313, 2171, 2382, 2462, 2626, 3693, 3939, 3998, 4342, 4486, 5161, 5997, 6513, 6729, 7162, 7386, 7878, 8914, 10322, 10743, 11994, 12178, 13026, 13371, 13458, 15483, 15866, 16003, 16867, 18267, 19286
Offset: 1
Keywords
Examples
The sequence of all semi-lone-child-avoiding rooted identity trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 6: (o(o)) 26: (o(o(o))) 39: ((o)(o(o))) 78: (o(o)(o(o))) 202: (o(o(o(o)))) 303: ((o)(o(o(o)))) 334: (o((o)(o(o)))) 501: ((o)((o)(o(o)))) 606: (o(o)(o(o(o)))) 794: (o(o(o)(o(o))))
Links
Crossrefs
A subset of A276625 (MG-numbers of identity trees).
Not requiring an identity tree gives A331935.
The locally disjoint version is A331937.
These trees are counted by A331964.
The semi-identity case is A331994.
Matula-Goebel numbers of identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees are A331965.
Programs
-
Mathematica
msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&And@@msiQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[1000],msiQ]
Comments