A331964 Number of semi-lone-child-avoiding rooted identity trees with n vertices.
1, 1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 44, 74, 123, 209, 353, 602, 1026, 1760, 3019, 5203, 8977, 15538, 26930, 46792, 81415, 141939, 247795, 433307, 758672, 1330219, 2335086, 4104064, 7220937, 12718694, 22424283, 39574443, 69903759, 123584852, 218668323
Offset: 1
Keywords
Examples
The a(9) = 2 through a(12) = 10 semi-lone-child-avoiding rooted identity trees: ((o)(o(o(o)))) (o(o)(o(o(o)))) ((o)(o(o)(o(o)))) (o(o)(o(o)(o(o)))) (o((o)(o(o)))) (o(o(o)(o(o)))) ((o)(o(o(o(o))))) (o(o)(o(o(o(o))))) (o(o(o(o(o))))) ((o(o))(o(o(o)))) (o(o(o))(o(o(o)))) ((o)((o)(o(o)))) (o((o)(o(o(o))))) (o(o(o)(o(o(o))))) (o(o)((o)(o(o)))) (o(o(o(o)(o(o))))) (o(o((o)(o(o))))) (o(o(o(o(o(o)))))) ((o)((o)(o(o(o))))) ((o)(o((o)(o(o))))) ((o(o))((o)(o(o)))) (o((o)((o)(o(o)))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Gus Wiseman, The semi-lone-child-avoiding rooted identity trees with up to 13 vertices.
Crossrefs
Programs
-
Mathematica
ssei[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[ssei/@c]],UnsameQ@@#&]]/@Rest[IntegerPartitions[n-1]]]; Table[Length[ssei[n]],{n,15}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, WeighT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020
Extensions
Terms a(36) and beyond from Andrew Howroyd, Feb 09 2020
Comments