A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.
1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1
Keywords
Examples
The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins: 1: o 4: (oo) 8: (ooo) 16: (oooo) 32: (ooooo) 49: ((oo)(oo)) 64: (oooooo) 128: (ooooooo) 256: (oooooooo) 343: ((oo)(oo)(oo)) 361: ((ooo)(ooo)) 512: (ooooooooo) 1024: (oooooooooo) 2048: (ooooooooooo) 2401: ((oo)(oo)(oo)(oo)) 2809: ((oooo)(oooo)) 4096: (oooooooooooo) 6859: ((ooo)(ooo)(ooo)) 8192: (ooooooooooooo) 16384: (oooooooooooooo) 16807: ((oo)(oo)(oo)(oo)(oo)) 17161: ((ooooo)(ooooo)) 32768: (ooooooooooooooo) 51529: (((oo)(oo))((oo)(oo))) 65536: (oooooooooooooooo) 96721: ((oooooo)(oooooo))
Links
Crossrefs
A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.
Programs
-
Mathematica
msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[10000],msQ]
Comments