A331988 Table T(n,k) read by antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}.
1, 2, 2, 6, 9, 3, 24, 64, 20, 4, 120, 625, 216, 36, 5, 720, 7776, 3136, 512, 56, 6, 5040, 117649, 59049, 10000, 1000, 81, 7, 40320, 2097152, 1331000, 248832, 24336, 1728, 110, 8, 362880, 43046721, 35831808, 7529536, 759375, 50625, 2744, 144, 9, 3628800, 1000000000, 1097199376, 268435456, 28652616, 1889568, 93636, 4096, 182, 10
Offset: 1
Examples
T(n,k) k 1 2 3 4 5 6 7 8 9 10 11 12 --------------------------------------------------------------------------------- n 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 2 9 20 36 56 81 110 144 182 225 272 324 3| 6 64 216 512 1000 1728 2744 4096 5832 8000 10648 13824 4| 24 625 3136 10000 24336 50625 93636 160000 256036 390625 571536 810000
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..70
- Chai Wah Wu, Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized, arXiv:1508.02934 [math.CO], 2015-2020.
- Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
Programs
-
Python
from itertools import permutations, combinations_with_replacement def A331988(n,k): # compute T(n,k) if k == 1: count = 1 for i in range(1,n): count *= i+1 return count ntuple, count = tuple(range(1,n+1)), 0 for s in combinations_with_replacement(permutations(ntuple,n),k-2): t = list(ntuple) for d in s: for i in range(n): t[i] += d[i] t.sort() w = 1 for i in range(n): w *= (n-i)+t[i] if w > count: count = w return count
Formula
T(n,n) = (n*(n+1)/2)^n = A061718(n).
T(n,k) <= (k(n+1)/2)^n.
T(1,k) = k = A000027(k).
T(n,1) = n! = A000142(n).
T(2,2m) = 9m^2 = A016766(m).
T(2,2m+1) = (3m+1)*(3m+2) = A001504(m).
T(n,2) = (n+1)^n = A000169(n+1).
T(3,k) = 8k^3 = A016743(k) for k > 1.
If n divides k then T(n,k) = (k*(n+1)/2)^n.
If k is even then T(n,k) = (k*(n+1)/2)^n.
If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n.
If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2).
Comments