A331991 Number of semi-lone-child-avoiding achiral rooted trees with n vertices.
1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 4, 4, 1, 7, 1, 7, 5, 6, 1, 7, 3, 7, 5, 7, 1, 13, 1, 8, 6, 6, 6, 10, 1, 9, 7, 9, 1, 15, 1, 12, 12, 8, 1, 12, 4, 13, 6, 11, 1, 15, 7, 13, 9, 9, 1, 17, 1, 15, 15, 9, 8, 21, 1, 13, 8, 16, 1, 18, 1, 12, 16, 11, 8, 21, 1
Offset: 1
Keywords
Examples
The a(n) trees for n = 2, 3, 5, 7, 11, 13: (o) (oo) (oooo) (oooooo) (oooooooooo) (oooooooooooo) ((o)(o)) ((oo)(oo)) ((oooo)(oooo)) ((ooooo)(ooooo)) ((o)(o)(o)) ((o)(o)(o)(o)(o)) ((ooo)(ooo)(ooo)) (((o)(o))((o)(o))) ((oo)(oo)(oo)(oo)) ((o)(o)(o)(o)(o)(o))
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Matula-Goebel numbers of these trees are A331992.
The fully lone-child-avoiding case is A167865.
The semi-achiral version is A331933.
Not requiring achirality gives A331934.
The identity tree version is A331964.
The semi-identity tree version is A331993.
Achiral rooted trees are counted by A003238.
Lone-child-avoiding semi-achiral trees are A320268.
Programs
-
Mathematica
ab[n_]:=If[n<=2,1,Sum[ab[d],{d,Most[Divisors[n-1]]}]]; Array[ab,100]
Formula
a(1) = a(2) = 1; a(n + 1) = Sum_{d|n, d 1.
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 + x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020
Comments