A331992 Matula-Goebel numbers of semi-lone-child-avoiding achiral rooted trees.
1, 2, 4, 8, 9, 16, 27, 32, 49, 64, 81, 128, 243, 256, 343, 361, 512, 529, 729, 1024, 2048, 2187, 2401, 2809, 4096, 6561, 6859, 8192, 10609, 12167, 16384, 16807, 17161, 19683, 32768, 51529, 59049, 65536, 96721, 117649, 130321, 131072, 148877, 175561, 177147
Offset: 1
Keywords
Examples
The sequence of all semi-lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 8: (ooo) 9: ((o)(o)) 16: (oooo) 27: ((o)(o)(o)) 32: (ooooo) 49: ((oo)(oo)) 64: (oooooo) 81: ((o)(o)(o)(o)) 128: (ooooooo) 243: ((o)(o)(o)(o)(o)) 256: (oooooooo) 343: ((oo)(oo)(oo)) 361: ((ooo)(ooo)) 512: (ooooooooo) 529: (((o)(o))((o)(o))) 729: ((o)(o)(o)(o)(o)(o)) 1024: (oooooooooo)
Links
Crossrefs
Except for two, a subset of A025475 (nonprime prime powers).
Not requiring achirality gives A331935.
The semi-achiral version is A331936.
The fully-chiral version is A331963.
The semi-chiral version is A331994.
The non-semi version is counted by A331967.
The enumeration of these trees by vertices is A331991.
Achiral rooted trees are counted by A003238.
MG-numbers of achiral rooted trees are A214577.
Programs
-
Mathematica
msQ[n_]:=n<=2||!PrimeQ[n]&&Length[FactorInteger[n]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[10000],msQ]
Comments