A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees.
1, 2, 4, 6, 8, 12, 14, 16, 21, 24, 26, 28, 32, 38, 39, 42, 48, 52, 56, 57, 64, 74, 76, 78, 84, 86, 91, 96, 104, 106, 111, 112, 114, 128, 129, 133, 146, 148, 152, 156, 159, 168, 172, 178, 182, 192, 202, 208, 212, 214, 219, 222, 224, 228, 247, 256, 258, 259, 262
Offset: 1
Keywords
Examples
The sequence of all semi-lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 6: (o(o)) 8: (ooo) 12: (oo(o)) 14: (o(oo)) 16: (oooo) 21: ((o)(oo)) 24: (ooo(o)) 26: (o(o(o))) 28: (oo(oo)) 32: (ooooo) 38: (o(ooo)) 39: ((o)(o(o))) 42: (o(o)(oo)) 48: (oooo(o)) 52: (oo(o(o))) 56: (ooo(oo)) 57: ((o)(ooo)) The sequence of terms together with their prime indices begins: 1: {} 64: {1,1,1,1,1,1} 159: {2,16} 2: {1} 74: {1,12} 168: {1,1,1,2,4} 4: {1,1} 76: {1,1,8} 172: {1,1,14} 6: {1,2} 78: {1,2,6} 178: {1,24} 8: {1,1,1} 84: {1,1,2,4} 182: {1,4,6} 12: {1,1,2} 86: {1,14} 192: {1,1,1,1,1,1,2} 14: {1,4} 91: {4,6} 202: {1,26} 16: {1,1,1,1} 96: {1,1,1,1,1,2} 208: {1,1,1,1,6} 21: {2,4} 104: {1,1,1,6} 212: {1,1,16} 24: {1,1,1,2} 106: {1,16} 214: {1,28} 26: {1,6} 111: {2,12} 219: {2,21} 28: {1,1,4} 112: {1,1,1,1,4} 222: {1,2,12} 32: {1,1,1,1,1} 114: {1,2,8} 224: {1,1,1,1,1,4} 38: {1,8} 128: {1,1,1,1,1,1,1} 228: {1,1,2,8} 39: {2,6} 129: {2,14} 247: {6,8} 42: {1,2,4} 133: {4,8} 256: {1,1,1,1,1,1,1,1} 48: {1,1,1,1,2} 146: {1,21} 258: {1,2,14} 52: {1,1,6} 148: {1,1,12} 259: {4,12} 56: {1,1,1,4} 152: {1,1,1,8} 262: {1,32} 57: {2,8} 156: {1,1,2,6} 266: {1,4,8}
Links
Crossrefs
The locally disjoint version is A331681.
The enumeration of these trees by vertices is A331993.
Semi-identity trees are A306200.
MG-numbers of rooted identity trees are A276625.
MG-numbers of lone-child-avoiding rooted identity trees are {1}.
MG-numbers of lone-child-avoiding rooted trees are A291636.
MG-numbers of semi-identity trees are A306202.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.
MG-numbers of semi-lone-child-avoiding rooted identity trees are A331963.
MG-numbers of lone-child-avoiding rooted semi-identity trees are A331965.
Programs
-
Mathematica
scsiQ[n_]:=n==1||n==2||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@scsiQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[100],scsiQ]
Comments