A331998 Triangle of coefficients of quasi-Stirling polynomials.
1, 1, 3, 1, 13, 16, 1, 39, 171, 125, 1, 101, 1091, 2551, 1296, 1, 243, 5498, 28838, 43653, 16807, 1, 561, 24270, 243790, 780585, 850809, 262144, 1, 1263, 98661, 1733035, 10073955, 22278189, 18689527, 4782969, 1, 2797, 379693, 10996369, 106215619, 410994583, 677785807, 457947691, 100000000
Offset: 1
Examples
Triangle begins 1; 1, 3; 1, 13, 16; 1, 39, 171, 125; 1, 101, 1091, 2551, 1296; 1, 243, 5498, 28838, 43653, 16807;
Links
- Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020. See p. 7.
Programs
-
PARI
A(t, z) = (1-t)/(1 - t*exp((1-t)*z)); Q(n, t) = (n!/(n+1))*polcoeff(A(t, z)^(n+1), n, z); row(n) = my(rowx = Vec(Q(n, t))); vector(n, k, rowx[k]);