cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332004 Number of compositions (ordered partitions) of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 12, 16, 24, 52, 64, 88, 132, 180, 344, 416, 616, 816, 1176, 1496, 2736, 3232, 4756, 6176, 8756, 11172, 15576, 24120, 30460, 41456, 55740, 74440, 97976, 130192, 168408, 256464, 315972, 429888, 558192, 749920, 958264, 1274928, 1621272, 2120288, 3020256
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Comments

Moebius transform of A032020.
Ranking these compositions using standard compositions (A066099) gives the intersection of A233564 (strict) with A291166 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			a(6) = 8 because we have [5, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(8) = 16 compositions (empty column indicated by dot):
  (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
          (2,1)  (3,1)  (2,3)  (5,1)    (2,5)    (3,5)
                        (3,2)  (1,2,3)  (3,4)    (5,3)
                        (4,1)  (1,3,2)  (4,3)    (7,1)
                               (2,1,3)  (5,2)    (1,2,5)
                               (2,3,1)  (6,1)    (1,3,4)
                               (3,1,2)  (1,2,4)  (1,4,3)
                               (3,2,1)  (1,4,2)  (1,5,2)
                                        (2,1,4)  (2,1,5)
                                        (2,4,1)  (2,5,1)
                                        (4,1,2)  (3,1,4)
                                        (4,2,1)  (3,4,1)
                                                 (4,1,3)
                                                 (4,3,1)
                                                 (5,1,2)
                                                 (5,2,1)
(End)
		

Crossrefs

A000740 is the non-strict version.
A078374 is the unordered version (non-strict: A000837).
A101271*6 counts these compositions of length 3 (non-strict: A000741).
A337561/A337562 is the pairwise coprime instead of relatively prime version (non-strict: A337462/A101268).
A289509 gives the Heinz numbers of relatively prime partitions.
A333227/A335235 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&GCD@@#<=1&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)