A332013 T(n, k) is the least positive m such that floor(n/m) AND floor(k/m) = 0 (where AND denotes the bitwise AND operator). Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 5, 2, 3, 2, 1, 1, 1, 3, 3, 5, 5, 3, 3, 1, 1, 1, 2, 1, 3, 3, 6, 3, 3, 1, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 3, 1
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+--------------------------------------- 0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1| 1 2 1 2 1 2 1 2 1 2 1 2 1 2| 1 1 3 3 1 1 3 3 1 1 3 3 1 3| 1 2 3 4 1 2 3 3 1 2 4 4 1 4| 1 1 1 1 5 5 3 3 1 1 1 1 3 5| 1 2 1 2 5 6 3 3 1 2 1 2 3 6| 1 1 3 3 3 3 7 7 1 1 4 4 3 7| 1 2 3 3 3 3 7 8 1 2 4 4 3 8| 1 1 1 1 1 1 1 1 9 9 5 5 3 9| 1 2 1 2 1 2 1 2 9 10 5 5 3 10| 1 1 3 4 1 1 4 4 5 5 11 11 3 11| 1 2 3 4 1 2 4 4 5 5 11 12 3 12| 1 1 1 1 3 3 3 3 3 3 3 3 13
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010 (antidiagonals 0..140)
- Rémy Sigrist, Colored representation of T(n, k) for n, k = 0..1024 (where the hue is function of T(n, k), red pixels correspond to 1's)
- Wikipedia, Sierpiński triangle
Programs
-
PARI
T(n,k) = for (m=1, oo, if (bitand(n\m, k\m)==0, return (m)))
Comments