A332019 The number of cells added in the n-th generation of the following procedure: start by coloring any triangle on the snub square tiling, then repeatedly color every cell that shares a vertex with a colored cell.
1, 9, 21, 35, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
Offset: 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
- Code Golf Stack Exchange, Concentric rings on a snub square tiling.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Formula
a(n) = 12*(n - 1) for n > 4.
From Stefano Spezia, Feb 05 2020: (Start)
G.f.: x*(1 + 7*x + 4*x^2 + 2*x^3 - x^4 - x^5)/(-1 + x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 6.
(End)