A332020 Positive integers m which are quadratic residues modulo prime(m).
1, 4, 5, 9, 12, 14, 16, 17, 19, 20, 22, 23, 25, 29, 30, 31, 34, 35, 36, 37, 38, 40, 42, 43, 46, 47, 49, 51, 53, 57, 59, 61, 63, 64, 66, 67, 70, 72, 73, 76, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 94, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 111, 112, 113, 115, 121, 125, 127, 128, 132, 134, 136, 137, 138, 140
Offset: 1
Keywords
Examples
a(1) = 1 since 1 is a quadratic residue modulo prime(1) = 2. a(2) = 4 since 4 is a quadratic residue modulo prime(4) = 7, but 2 is a quadratic nonresidue modulo prime(2) = 3, and 3 is a quadratic nonresidue modulo prime(3) = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
tab = {}; Do[If[JacobiSymbol[n, Prime[n]] == 1, tab = Append[tab, n]], {n, 140}]; tab
-
PARI
isok(m) = kronecker(m, prime(m)) == 1; \\ Michel Marcus, Feb 06 2020
Comments