cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332041 Indices of records in A332040.

Original entry on oeis.org

1, 6, 30, 330, 390, 2730, 5460, 12090, 60060, 92820, 223860, 1021020, 1922700, 3805620, 13458900, 41861820, 110362980, 113573460, 227146920, 251170920, 502341840, 563603040, 888287400, 1270629360, 1776574800, 3310889400, 23107724640, 27939071160, 33754921200, 36419783400
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Comments

Numbers k such that esigma(x) = k has more solutions x than any smaller k, where esigma(x) is the sum of exponential divisors of x (A051377).
The exponential version of A145899.
The corresponding number of solutions for each term is 1, 2, 5, 6, 8, 9, 10, 12, 15, 16, 19, 22, 27, 29, 35, 37, 38, 44, 45, 47, 50, 51, 52, 53, 66, 80, 83, 89, 95, 102.

Examples

			There are 2 solutions to esigma(x) = 6: esigma(4) = esigma(6) = 6. For all m < 6 there are no more than one solution to esigma(x) = m, thus 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; m = 10000; v = Table[0, {m}]; Do[sig = esigma[k]; If[sig <= m, v[[sig]]++], {k, 1, m}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 1, m}]; s

Extensions

a(26)-a(30) from Giovanni Resta, Feb 06 2020

A332036 Number of integers whose bi-unitary divisors sum to n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 1, 1, 0, 0, 3, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Examples

			a(12) = 2 since there are 2 solutions to bsigma(x) = 12 (bsigma is A188999): 6 and 11.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); m = 100; v = Table[0, {m}]; Do[b = bsigma[k]; If[b <= m, v[[b]]++], {k, 1, m}]; v

A332038 Number of integers whose infinitary divisors sum to n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 1, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 5, 0, 1, 0, 0, 0, 1, 0, 3, 0, 1, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Examples

			a(12) = 2 since there are 2 solutions to isigma(x) = 12 (isigma is A049417): 6 and 11.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ (fun @@@ FactorInteger[n]); m = 100; v = Table[0, {m}]; Do[i = isigma[k]; If[i <= m, v[[i]]++], {k, 1, m}]; v

A332042 Number of integers whose Dedekind psi function (A001615) values are n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 9, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2020

Keywords

Examples

			a(6) = 2 since there are 2 solutions to psi(x) = 6: 4 and 5.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); m = 100; v = Table[0, {m}]; Do[i = psi[k]; If[i <= m, v[[i]]++], {k, 1, m}]; v

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.7044422... (A065463). - Amiram Eldar, Dec 25 2024
Showing 1-4 of 4 results.