A332078 Primes p = k*2^m + 1 such that k + 2^m is not prime, where k and m are the odd part and 2-valuation, respectively, of p-1.
47, 67, 97, 107, 127, 137, 151, 167, 179, 181, 227, 239, 263, 283, 293, 307, 347, 349, 367, 431, 439, 457, 461, 467, 487, 491, 503, 547, 557, 571, 587, 599, 607, 617, 641, 643, 647, 661, 683, 719, 727, 733, 739, 751, 769, 787, 797, 811, 821, 823, 827, 853, 857, 887, 907
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Thomas Ordowski, Problem, post to the SeqFan list, August 2020.
Crossrefs
Programs
-
Maple
filter:= proc(p) local k,m; if not isprime(p) then return false fi; m:= padic:-ordp(p-1,2); k:= (p-1)/2^m; not isprime(k+2^m); end proc: select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Sep 14 2020
-
Mathematica
Select[Range[1000], PrimeQ[#] && !PrimeQ[(m = 2^IntegerExponent[# - 1, 2]) + (# - 1)/m] &] (* Amiram Eldar, Aug 14 2020 *)
-
PARI
(A332078_upto(N)=[p|p<-primes([1,N]),!is_A332075(p)])(1000)
Comments