A332084 Triangle read by rows: T(n,k) is the smallest m >= 0 such that floor(Pi*n^m) == k (mod n), -1 if one does not exist, k = 0..n-1.
0, 1, 0, 0, 2, 4, 1, 3, 2, 0, 1, 7, 3, 0, 8, 1, 9, 14, 0, 10, 2, 1, 7, 10, 0, 8, 6, 2, 3, 1, 8, 0, 9, 6, 14, 5, 10, 1, 2, 0, 3, 20, 18, 11, 5, 32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 5, 1, 8, 0, 13, 4, 2, 6, 9, 24, 12, 5, 1, 22, 0, 3, 17, 14, 18, 2, 6, 20, 10, 5, 1, 10, 0, 6, 9, 17, 14, 23, 7, 2, 21, 3
Offset: 1
Examples
The triangle T(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 0 2: 1 0 3: 0 2 4 4: 1 3 2 0 5: 1 7 3 0 8 6: 1 9 14 0 10 2 7: 1 7 10 0 8 6 2 8: 3 1 8 0 9 6 14 5 9: 10 1 2 0 3 20 18 11 5 10: 32 1 6 0 2 4 7 13 11 5 11: 5 1 22 0 13 4 2 6 9 24 12 12: 5 1 10 0 3 17 14 18 2 6 20 10 13: 5 1 10 0 6 9 17 14 23 7 2 21 3
Links
- Davis Smith, Rows n = 1..144 of triangle, flattened
- David G. Anderson, The Pi-Search Page.
- D. H. Bailey, J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, and A. Yee, An Empirical Approach to the Normality of π, Experimental Math., 21 (2012), 375-384.
- C. Sevcik, Fractal analysis of Pi normality, arXiv:1608.00430 [math.GM], 2016.
- P. Trueb, Digit Statistics of the First 22.4 Trillion Decimal Digits of Pi, arXiv:1612.00489 [math.NT], 2016.
- Wikipedia, Normal number.
Crossrefs
Programs
-
PARI
A332084_row(n)={my(L=List(vector(n,z,-1)), m=-1); while(vecmin(Vec(L))==-1, my(Z=lift(Mod(floor(Pi*n^(m++)),n))+1); if(L[Z]<0,listput(L,m,Z))); Vec(L)}
Formula
T(n,3) = 0, n > 3.
Comments