A332097 Maximum of s^n - Sum_{0 < x < s} x^n.
1, 1, 4, 28, 317, 4606, 84477, 1919575, 47891482, 1512466345, 48627032377, 1930020260416, 77986967769593, 3624337209819538, 178110510699972510, 9381158756438306167, 548676565488760277878, 31900481466759651567625, 2189463436999785648552851, 144075114432622269076465962
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..367
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (s-> s^n-add(x^n, x=1..s-1))(ceil(1/(2^(1/n)-1)))) end: seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020
-
Mathematica
a[0] = 1; a[n_] := (s = Ceiling[1/(2^(1/n) - 1)])^n - Sum[k^n, {k, 1, s - 1}]; Array[a, 20, 0] (* Amiram Eldar, May 09 2020 *)
-
PARI
{apply( A332097(n,s=1\(sqrtn(2,n-!n)-1))=(s+1)^n-sum(k=1,s,k^n), [0..20])}
Formula
a(n) = s^n - Sum_{0 < x < s} x^n for s = ceiling(1/(2^(1/n)-1)) = A078607(n).
Comments