A332099 Square array T(n,k) = k^n - Sum_{0 < i < k} e(i)*(k-i)^n where e(i) = 1 if the partial sum up to this term would remain <= k^n, or 0 else; n, k >= 1; read by falling antidiagonals.
1, 1, 1, 0, 3, 1, 0, 4, 7, 1, 0, 2, 18, 15, 1, 0, 0, 28, 64, 31, 1, 0, 1, 25, 158, 210, 63, 1, 0, 0, 0, 271, 748, 664, 127, 1, 0, 1, 1, 317, 1825, 3302, 2058, 255, 1, 0, 0, 8, 126, 3351, 10735, 14068, 6304, 511, 1, 0, 2, 0, 45, 4606, 26141, 59425, 58718, 19170, 1023, 1, 0, 0, 19, 47, 3760, 50478, 183111, 318271, 241948, 58024, 2047, 1
Offset: 1
Examples
The square array starts n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 --+---------------------------------------------------------------------------- 1 | 1 1 0 0 0 0 0 0 0 0 0 0 0 2 | 1 3 4 2 0 1 0 1 0 2 0 2 0 3 | 1 7 18 28 25 0 1 8 0 19 15 18 0 4 | 1 15 64 158 271 317 126 45 47 59 191 61 285 5 | 1 31 210 748 1825 3351 4606 3760 398 131 702 0 1229 6 | 1 63 664 3302 10735 26141 50478 77324 84477 21595 55300 29603 2093 (...) Columns 1, 2, 3: A000012, A000225, |A083321|, cf. FORMULA. We have T(2,10) = 10^2 - 9^2 - 4^2 - 1 = 2, because we first have to subtract 9^2 = 81, even though 10 is in row 2 of A332065 since 10^2 - 8^2 - 6^2 = 0.
Crossrefs
Programs
-
PARI
A332099(n,k,t=k^n)={while(k&&t,t-=(k=min(sqrtnint(t,n),k-1))^n);t}
Comments