A332195
a(n) = 10^(2n+1) - 4*10^n - 1.
Original entry on oeis.org
5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, 999999999959999999999, 99999999999599999999999, 9999999999995999999999999, 999999999999959999999999999, 99999999999999599999999999999, 9999999999999995999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332115 ..
A332185 (variants with different repeated digit 1, ..., 8).
-
A332195 := n -> 10^(n*2+1)-4*10^n-1;
-
Array[ 10^(2 # + 1) - 1 - 4*10^# &, 15, 0]
-
apply( {A332195(n)=10^(n*2+1)-1-4*10^n}, [0..15])
-
def A332195(n): return 10**(n*2+1)-1-4*10^n
A332125
a(n) = 2*(10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
5, 252, 22522, 2225222, 222252222, 22222522222, 2222225222222, 222222252222222, 22222222522222222, 2222222225222222222, 222222222252222222222, 22222222222522222222222, 2222222222225222222222222, 222222222222252222222222222, 22222222222222522222222222222, 2222222222222225222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332125 := n -> 2*(10^(2*n+1)-1)/9+3*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332125(n)=10^(n*2+1)\9*2+3*10^n}, [0..15])
-
def A332125(n): return 10**(n*2+1)//9*2+3*10**n
A332185
a(n) = 8*(10^(2n+1)-1)/9 - 3*10^n.
Original entry on oeis.org
5, 858, 88588, 8885888, 888858888, 88888588888, 8888885888888, 888888858888888, 88888888588888888, 8888888885888888888, 888888888858888888888, 88888888888588888888888, 8888888888885888888888888, 888888888888858888888888888, 88888888888888588888888888888, 8888888888888885888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
Cf.
A332115 ..
A332195 (variants with different "wing" digit 1, ..., 9).
-
A332185 := n -> 8*(10^(2*n+1)-1)/9-3*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
-
apply( {A332185(n)=10^(n*2+1)\9*8-3*10^n}, [0..15])
-
def A332185(n): return 10**(n*2+1)//9*8-3*10**n
A332145
a(n) = 4*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
5, 454, 44544, 4445444, 444454444, 44444544444, 4444445444444, 444444454444444, 44444444544444444, 4444444445444444444, 444444444454444444444, 44444444444544444444444, 4444444444445444444444444, 444444444444454444444444444, 44444444444444544444444444444, 4444444444444445444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332145 := n -> 4*(10^(2*n+1)-1)/9+10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332145(n)=10^(n*2+1)\9*4+10^n}, [0..15])
-
def A332145(n): return 10**(n*2+1)//9*4+10**n
A332165
a(n) = 6*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
5, 656, 66566, 6665666, 666656666, 66666566666, 6666665666666, 666666656666666, 66666666566666666, 6666666665666666666, 666666666656666666666, 66666666666566666666666, 6666666666665666666666666, 666666666666656666666666666, 66666666666666566666666666666, 6666666666666665666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332165 := n -> 6*(10^(2*n+1)-1)/9-10^n;
-
Array[6 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332165(n)=10^(n*2+1)\9*6-10^n}, [0..15])
-
def A332165(n): return 10**(n*2+1)//9*6-10**n
Showing 1-5 of 5 results.
Comments