cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332119 a(n) = (10^(2n+1)-1)/9 + 8*10^n.

Original entry on oeis.org

9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107649 = {1, 4, 26, 187, 226, 874, ...} for the indices of primes.

Crossrefs

Cf. (A077795-1)/2 = A107649: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332129 .. A332189 (variants with different repeated digit 2, ..., 8).
Cf. A332112 .. A332118 (variants with different middle digit 2, ..., 8).

Programs

  • Maple
    A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
    
  • Python
    def A332119(n): return 10**(n*2+1)//9+8*10**n

Formula

a(n) = A138148(n) + 9*10^n = A002275(2n+1) + 8*10^n.
G.f.: (9 - 808*x + 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.