A332119 a(n) = (10^(2n+1)-1)/9 + 8*10^n.
9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0
Links
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)9(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11911...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
-
Mathematica
Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0] Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
-
PARI
apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
-
Python
def A332119(n): return 10**(n*2+1)//9+8*10**n
Comments