cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332122 Decimal expansion of unique real root of the polynomial X^3 - X^2 - X/2 - 1/6.

Original entry on oeis.org

1, 4, 3, 0, 8, 4, 9, 5, 6, 6, 2, 4, 2, 7, 8, 8, 9, 2, 8, 2, 3, 0, 2, 1, 7, 8, 4, 9, 8, 9, 2, 5, 5, 0, 8, 0, 5, 9, 6, 6, 2, 0, 2, 1, 4, 6, 2, 5, 5, 7, 4, 2, 8, 0, 5, 0, 6, 5, 1, 8, 0, 5, 1, 1, 7, 0, 8, 7, 6, 8, 3, 1, 1, 1, 1, 8, 8, 2, 4, 8, 6, 4, 1, 4, 9, 6, 7, 9, 8, 5, 4, 9, 3, 4, 2, 8, 3, 1, 9
Offset: 1

Views

Author

M. F. Hasler, Oct 22 2020

Keywords

Comments

The only real value among the unique solution {a, b, c} of a^k + b^k + c^k = k, k = 1, 2 and 3. (These three equations also imply that abc = 1/6, a^4 + b^4 + c^4 = 25/6 and a^5 + b^5 + c^5 = 6, without solving for the explicit solution.)

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^3 - x^2 - x/2 - 1/6 == 0, {x, 1}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, Oct 22 2020 *)
    RealDigits[Root[-1 - 3 # - 6 #^2 + 6 #^3 &, 1], 10, 100][[1]] (* Jan Mangaldan, Nov 24 2020 *)
  • PARI
    A332122_vec(N=99)={localprec(N+9); digits(solve(a=1,2, 1/6 + a/2 + a^2 - a^3)\.1^N)[^-1]}
    
  • PARI
    A332122_vec(N=99)={localprec(N+9); my(t=sqrt(936)); digits((sqrtn(44-t,3)+sqrtn(44+t,3)+2)/6\.1^N)[^-1]}

Formula

c = (2 + (44 - 6 sqrt(26))^(1/3) + (44 + 6 sqrt(26))^(1/3))/6
= 1.4308495662427889282302178498925508059662021462557428050651805117...