A332133 Decimal expansion of (1 + sqrt(3))/2, unique positive root of x^2 - x - 1/2.
1, 3, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8
Offset: 1
Examples
1.3660254037844386467637231707529361834714026269051903140279...
Crossrefs
Programs
-
Mathematica
RealDigits[(1 + Sqrt[3])/2, 10, 120][[1]] (* Amiram Eldar, Jun 21 2023 *)
-
PARI
localprec(111); digits(solve(a=0,2,a^2-a-1/2)\.1^99)
-
PARI
polrootsreal(2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Jan 26 2023
Formula
Equals 1/2 + Sum_{n>=0} ((-1)^(n + 1)*binomial(2*n, n))/(2^(3*n + 1/2)*(2*n - 1)). - Antonio GraciĆ” Llorente, Nov 11 2024
Comments